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I. Summary: Objectives and Status of Effort

In this report we summarize our accomplishments under the research program
supported by Grant F49620-98-1-0349. The basic scope of this research program isto
carry out fundamental research in several interrelated areas: (a) the use of multiresolution
methods in statistically optimal image analysis, with applications in multisensor fusion,
image segmentation, anomaly detection, and optimal processing in the presence of speckle;
(b) the blending of sensor physics and statistical models for computationally efficient, near-
optimal inversion and image formation with applications in radar imaging and other areas of
interest to the Air Force; (c) the development of statistically robust and computationaily
efficient nonlinear image processing methods with applications in segmentation, edge
detection, and feature extraction for object recognition; (d) the development of
multiresolution and wavelet-based methods for robust feature extraction, with applications
in object recognition; (¢) the development of fast numerical methods for a number of
difficult problems in statistical image processing using a blend of advanced numerical
methods and our work on multiresolution algorithms; and (f) the extension of our
multiresolution modeling framework to include very different granularities of information,
from image pixels to discrete variables representing context, with applications to the
emerging areas of global awareness and integrated spatial databases. Key features of this
proposal are that (i) it blends together methods from several fields--statistics and
probabilistic modeling, signal and image processing, mathematical physics, scientific
computing, Bayesian networks, and nonlinear differential equations--to produce new
approaches to emerging and challenging problems in signal and image processing; (ii) it
both builds on the research results we have obtained under our current grant and also
explores new directions in which our approaches appear to have significant merit; and (iii)
each aspect of the proposed program contains both fundamental research in mathematical
sciences and important applications of direct relevance to Air Force missions.

The principal investigator for this effort is Professor Alan S. Willsky. Professor |
Willsky has been assisted in this effort by Dr. John Fisher, a research scientist in MIT's
Laboratory for Information and Decision Systems, and by several graduate research
assistants as well as additional thesis students not requiring stipend or tuition support from
this grant. In the next section we describe our research accomplishments; in Section Il we
indicate the individuals involved in this effort; in Section IV we list the publications
supported by this effort; and in Section V we discuss interactions and transitions.




II. Accomplishments/New Findings

In this section we briefly describe the research accomplishments we have achieved
with support provided by this grant. We limit ourselves here to a succinct summary and
refer to the publications listed at the end of this report (as well as the previous progress
reports) for detailed developments.

2.1 Multiresolution, Hierarchical, and Relational Modeling

The research described in this section is developed in great detail in a number of
papers and reports [1,3,6,17,19,22,27,33,34,41,44,60-63]. The overall objective of this
portion of our research is the development of methods for constructing stochastic models
for phenomena that vary over space, time, and hierarchy and that possess structure which
can be exploited to construct efficient and scaleable algorithms for statistical inference (the
subject of subsequent sections of this report).

a) As we described in our earliest work on multiresolution models on trees, each
node on the tree in a multiresolution model separates the tree into several disjoint subtrees
(corresponding to the disconnected components of the tree if that particular node were
removed). The role of the state at that node is to act as a statistical interface between these
subtrees. That is, conditioned on the state at that node, the sets of variables in these
disjoint subtrees are mutually uncorrelated. In our early work in this area we combined this
characterization of state with a generalization of the notion of canonical correlations to
develop a first approach to constructing multiscale models that yield statistics for the finest-
scale process (i.e., the variables at the finest-scale leaf nodes of the tree) that approximately
match those of a given stochastic process or random field. This approach to building
multiresolution models, while providing excellent models for stochastic phenomena that we
had not been able to model previously, had significant limitations and drawbacks, many of
which have been exposed in our recent work [34]. First of all, the use of canonical
correlations as the criterion for determining state variables at each node is extremely
complex computationally. Secondly, the use of the criterion of maximal decorrelation is
not necessarily the right one to use. In particular, as argued in [34], the reason for
constructing multiresolution models is that they then provide the basis for very efficient
statistical inference computations, e.g., for the calculation of optimal estimates of the
phenomenon being modeled given noisy and possibly incomplete observations. This
suggests that perhaps a better criterion for designing a state variable at a node on a tree is to
choose states that do the best job of estimating variables at the leaf nodes of one of the
subtrees given measurements of the leaf nodes on another of the subtrees. Not only does
this approach lead to the definition of state variables designed in a manner more consistent
with the ultimate use to which the model will be put, but it also leads to a dramatic
reduction in computational complexity.

Moreover, in [34] we also provide a deeper interpretation of what the state variables
are. In particular, in its most general and unconstrained form, the states in a
multiresolution model at all but the leaf nodes are simply hidden variables, designed simply
to fulfill their role in statistically decorrelating the subtrees extending away from each node.
However, in many cases we want these variables to have real physical significance, namely
that they truly do represent coarser versions of the finest scale process. Adopting
terminology from state space realization theory for time series, a multiresolution model in
which each state consists of a set of nonlocal, coarser functionals of the finest-scale
process--is called an internal model. In [34] we provide a complete theoretical
characterization of the properties of states of internal models which, in particular, shows
that these states have a scale-recursive structure from fine-to-coarse. That is, much as in




wavelet analysis, each state in an internal multiscale model consists of nonlocal functionals
of its immediate descendent. In [34] we develop an algorithm that not only produces
internal stochastic models but that exploits the fine-to-coarse characterization of internal
states to achieves even greater computational efficiency. The bottom line is that, while our
previous algorithm had O( N*) complexity, where N is the number of leaf nodes in the tree
(e.g., the number of pixels in the image of interest), our new algorithm has complexity that
has O(N?) complexity.

b) The second component of this portion of our research involves the
rapprochement of our multiresolution methods with the machinery of wavelet analysis [22].
This is nontrivial intellectually, as it provides a different way in which to view wavelet
functionals. In particular, while wavelets are usually thought of as a tool for analyzing
signals and images, we have now shown how we can incorporate some of the machinery
of wavelets into our multiresolution framework which focuses on modeling signals and
images. In particular, by making this embedding, our statistical methodology naturally
leads to a very different method for coarse-to-fine signal modeling--namely statistically
optimal coarse-to-fine prediction--than that suggested by standard wavelet synthesis.
Combining this with the theoretical concept of an internal multiresolution model, we have
shown that we can obtain remarkably accurate models of fractal processes with very low-
order wavelets--indeed far lower order than is achieved by standard wavelet methods.
Moreover, since the focus of our methodology is first on building models rather than on
analyzing data, we can directly use these same models to solve problems which are not
easily or naturally considered within the usual wavelet framework--e.g., statistical
reconstruction based on sparse and irregularly sampled data, optimal fusion of
multiresolution measurements, etc.

¢) In the third portion of our research in this area (described in detail in [41), we
have developed a major new result that addresses a significant issue not considered in our
previous work on building multiscale models. In particular, all of our other work on
multiscale modeling assumes that we have available the entire covariance of the fine scale
process to be modeled. In many applications this is not reasonable for two reasons: (i) for
large fields we may not know the entire covariance, i.e., the covariance between every fine-
scale pair of points in the field being modeled; and (ii) even if we did know this entire
covariance, explicitly storing or using it in a realization procedure quickly becomes
prohibitive for large problems. Thus we have looked at the problem of building a
multiscale model (which implicitly specifies the entire covariance) directly from knowledge
of only a part of the fine-scale covariance matrix. This turns out to be a novel variant of the
intensely studied problem of covariance extension.

Tn our work we have looked at what starts out as a standard problem: we are given
a diagonal band of the covariance matrix. What is well-known is that the max-entropy
extension of this covariance is a Markov process of order equal to the width of the specified
covariance band, and the celebrated Levinson algorithm allows one to specify not only this
extension implicitly through a time-dynamic model but also to characterize all possible
extensions in terms of so-called partial correlation coefficients. This algorithm allows one
to compute missing covariance elements band-by-band, extending outward from the
specified band. What we have developed is a significantly nontrivial extension of this idea
that involves filling covariance elements in very different orders. The motivation for this
extension is our earlier work that showed that Markov processes can be modeled exactly on
a multiscale tree. Constructing the parameters of this multiscale model requires knowledge
of certain elements of the overall covariance that do not at all fall in a banded structure but
rather require filling in a fractal pattern of elements in the covariance matrix. In seeing if
one could indeed do this efficiently, we developed new graph-theoretic results that
characterize sequential orders in which covariance elements can be computed efficiently and
to which Levinson’s algorithm can be extended. We then also show that the elements



required to be filled to construct our multiscale model indeed satisfy the conditions of our
graph-theoretic result, allowing us to build multiscale models efficiently. We believe that
this result is quite significant, not only because of its contribution to a very challenging and
widely studied theoretical problem but also because the graph-theoretic machinery we have
developed opens up many interesting and important research problems.

d) A broad area for the extension of our multiresolution methodologies is to non-
Gaussian and nonlinear models. In [44, 61-63] we describe some of our recent work
motivated by the statistical behavior of wavelet coefficients of real imagery. In particular,
while wavelets are known to do a good job of decorrelating images, the resulting wavelet
coefficients are generally neither Gaussian nor independent. In particular, the empirical
distributions of these coefficients generally show heavy-tailed behavior with sharp peaks at
zero. Moreover, there are characteristic dependencies among “neighboring” wavelet
coefficients (neighbors in location, scale, or orientation for steerable 2-D wavelet pyramids)
in which if one coefficient is large there is a higher probability that its neighbors are as
well. It is precisely this type of behavior that is exploited in wavelet-based compression
algorithms such as embedded zero-trees. Motivated by these empirical observations, we
have begun to develop a framework for capturing what we refer to as “wavelet cascades”

which capture both a variety of heavy-tailed distributions including a-stable processes as
well as the self-reinforcing cascade of large wavelet coefficients.

The model class described in [62] captures these characteristics with a construct that
has a great deal of structure. In particular, our models involve the use of general Gaussian
mixtures as a method for generating a variety of heavy-tailed distributions. More precisely,
our model involves the multiplicative mixing of a linear-Gaussian multiresolution model
with a memoryless nonlinear function of a second multiscale Gaussian process (known as
the “multiplier” process). By adjusting the scale-to-scale correlation of these processes and
the shape of the memoryless nonlinearity we can model a surprisingly rich set of heavy-
tailed behavior that exhibit the types of cascade phenomena found in real imagery. Thanks
to the structure of these models, we believe that they represent fertile ground for detailed
analysis and algorithm development. Indeed in [62] we present some preliminary resluts
showing how this structure can be exploited in developing efficient estimation and fusion
algorithms.

e) In other recent work [37] we have initiated an effort aimed at the development of
nonparametric statistical methods for constructing multiresolution models for applications
ranging from object recognition to data mining. In particular the construction of multiscale
models involves two distinct steps, the identification of the state variables to be used at each
node of the tree and then the identification of the coarse-to-fine multiscale statistical model.
In the context of linear-Gaussian models, the second of these is comparatively
straightforward and is roughly comparable to the one-step prediction problem for time
series (although on trees, each parent node has several children requiring prediction steps).
In the case of nonlinear multiresolution models, both of these steps are highly nontrivial,
and in our initial work we have focused on the second one. That is, in our work to date we
have fixed a priori the variables that comprise the states at each node and then seek to build
ponparametric coarse-to-fine statistical models relating these variables. The specific context
for our initial work in this area is SAR-based ATR, a subject described in subsequent
sections of this report. What is of significance for this section of our discussion are the
novel aspects of the problem of building nonparametric models for the coarse-to-fine
predictive model. As in the other aspects of our work, the fact that we have a tree
introduces new issues not encountered for time series. In particular, in time series
analysis, stationarity or local stationarity is invoked in order to obtain some stability to the
estimates of the time series model: e.g., we assume a stationary distribution for successive
data points and thus can use each successive pair of data points as a sample from the




distribution, providing a significant number of samples. What types of stationarity make
sense on a tree? Across nodes at the same scale? Across scale? Furthermore, we now
have several parent-child data pairs with the same parent but different children. Obviously
these are not independent samples since they share the same parent, but each such pair does
contain additional information. How do we account for this? In our initial work [37] we
have both posed these questions and taken very preliminary looks at them, yielding models
for SAR data that we have then used for object discrimination with sufficient success to
make clear that further pursuit of these issues is warranted.

f) The motivation for this portion of our research [7,10,21,42-43] is the problem
of fusion of data for spatially-distributed phenomena or imagery that also evolves in time.
The challenge in such problems is readily seen when one looks at their time-recursive
structure. In particular, from this perspective, the problem can be seen as one of
propagating estimates of entire spatial random fields at successive instants in time together
with the propagation of models of the uncertainty in these estimates (as these models are
then needed to specify the statistically correct way in which to assimilate data in the future).
Brute force application of standard recursive estimation concepts (e.g., like the Kalman
filter) lead to approaches that do not scale at all well with domain size and in fact become
prohibitive even for comparatively small spatial domains. The perspective we have adopted
in our initial work is to develop algorithms that directly propagate multiresolution statistical
models for estimation errors as time evolves and as we incorporate new data. The idea here
is that such models, which specify the error statistics implicitly (rather than explicitly as in
the standard Kalman filter), admit fast algorithms for incorporating new data as we
indicated in the preceding section. The key, then, is finding efficient methods for
propagating such models over time.

Our initial investigation in this area involved the study of 1-D space-time problems,
for which we have demonstrated that nearly optimal performance can be achieved with
computational load per time point that grows as NlogN, where N is the number of points in
the spatial domain. This compares to the N complexity per time point for standard Kalman
filtering. The key innovation here involves developing a method for propagating a
multiscale model for the spatial uncertainty in a random field across time, where the
temporal dynamics has the effect of “mixing” scales in the field. Because of this mixing,
the statistics relating variables at different scales changes, and computing these new
statistics and then calculating the scale-to-scale dynamics of the new multiscale model for
this temporally-mixed field is a computationally prohibitive task if done explicitly without
exploiting any structure. We have been able to overcome this computational obstacle
precisely through such exploitation. In particular, in our work we have focused on models
in which the temporal models involve two fundamental mechanisms: transport, in which
spatial variables are in essence carried along by a flow field, and diffusion, in which there
is spatially local mixing that takes place. While our most complete demonstration of the
effectiveness of this method is for problems with a one-dimensional spatial domain, our
method suggests ways in which to extend this concept to higher spatial dimensions.

2.2 Sensor Fusion Algorithms over Space, Time, and Hierarchy

The research described in this section deals with efficient algorithms for large-scale
optimal estimation and is reported in detail in [2,5,7,9-10,18,20-21,26-27, 29, 35-36,42-
45,60,62-63,68]. The general objective for this part of our research is to investigate
stochastic models with structure that can be exploited in order to develop optimal or near-
optimal algorithms that are scaleable to the large-scale problems encountered in image
analysis, sensor fusion, and higher-level fusion. In our work we have demonstrated the
power of multiscale linear/Gaussian models on trees in terms of the efficient algorithms that
such models exist. Our most recent aimed at significant extensions of the class of models




for which we can obtain algorithms that are as powerful or nearly as powerful as those for
linear-Gaussian models on trees.

g) The predominant algorithmic concept that is under investigation by researchers
in the field of graphical models is Pearl’s algorithm, which involves utilization only of the
local structure of a graph, ignoring global structure such as loops. While some
convergence results (both positive for estimates and negative for error covariances) exist,
there is a fundamental limitation to this approach, namely its exploitation only of local
structure. Thus, in particular, one might expect this algorithm to have the same slow
convergence properties as Gauss-Seidel algorithms for large linear systems corresponding
to standard MRF models on 2-D lattices or to elliptic PDE’s. Our very recent work [44,60]
is aimed at exploiting global structure explicitly. Indeed, this is exactly the point of our tree
algorithms. That is, it is precisely the global structure of trees (i.e., the absence of loops)
that allows us to propagate estimates very efficiently throughout the entire graph. In very
recent work we have looked at the question of what happens if we view the edge set of a
graph with loops as the union of edge sets of trees each of which comes from discarding a
subset of the edges of the original graph. Using this structure we can directly define
iterative algorithm in which we perform tree-based estimation using each of these
embedded tree models in succession. To date we have performed experiments which
indicate that, at least for certain types of graphical models, this approach leads to far more
efficient algorithms for estimation and for accurate computation of error covariances.

h) We have recently developed a new approach to large-scale estimation that adapts
and extends so-called Krylov subspace algorithms for solving large linear systems
[26,35,36,68]. The key to the efficiency of such algorithms in applications such as solving
discretized PDE’s is being able to quickly calculate particular matrix-vector products. In
the estimation context the matrix of concern is the data covariance matrix. Our contribution
is roughly threefold. The first is demonstrating the applicability of Krylov subspace
methods for large-scale spatial and space-time estimation for nontrivial classes of random
field models--in fact models that are in some sense complementary to those for which
multiresolution methods are directly applicable. The second contribution represents a
nontrivial extension of Krylov subspace algorithms for the computation of quantities that
are not typically of interest in other applications such as solving PDE’s but are essential in
our context, namely the calculation of estimation error covariances. Finally, the third
contribution is the development of a first set of convergence results for our algorithm.
While there are convergence analyses in the numerical linear algebra literature, the
difference in our work is that we needed to consider the fact that the quantities of interest
are described statistically (and, in particular, the data are corrupted by noise).

As described in [26,68] we have also developed an extension of the Krylov-
subspace algorithm to deal with large-scale time-recursive estimation for space-time
processes. In particular, the basic Krylov-subspace algorithm provides a fast algorithm for
incorporating measurements assuming that certain covariance-vector products can be
calculated quickly. In a recursive estimation context that algorithm can be used in the
measurement update step assuming both that we can propagate the required error
covariance and that the resulting covariance has structure that leads to fast matrix-vector
products. Achieving these two properties involves the development of a second Krylov-
subspace algorithm, in this case for the approximate propagation of the error statistics over
time as the temporal dynamics are used to predict estimates to the next measurement update
time. This is a nontrivial task, as it is not obvious that Krylov-subspace and conjugate
gradient methods can be applied to the problem. However, in our work we have developed
a concept for doing this which has shown its promise in preliminary testing.

i) We have developed a nonlinear/hybrid image analysis framework that combines

. our multiresolution estimation algorithms with the estimation of “hidden variables”




modeling data anomalies or abrupt changes (e.g., edges or discontinuities) in the scene
being imaged [18,27,45]. The key to this extension is the use of the EM algorithm,
coupled with our efficient multiscale estimation algorithm, in order to reconstruct or
denoise images subject to these anomalies and abrupt changes. The methodology for this
extension has now been developed, and we are nearing completion of the investigation of
its application in a prototypical and important military imaging problem, namely the
estimation of object shapes in laser radar range images. As with SAR and ISAR, such
images are subject to significant outliers due to speckle, and we have demonstrated that we
can use our new EM/Multiresolution framework not only to account for these anomalies but
also to accurately separate a target from the background (by modeling the abrupt change in
range or range slope when moving from background to target pixels as other hidden
variables) and then to estimate target shape robustly.

2.3 Statistical Modeling and Estimation of Shape with Applications in
Object Extraction and Recognition

The research described in this section represents one of the more recent and most
exciting components of our research and one which we believe has substantial further
promise for the future. In particular, the general objective of this part of our research is the
development of statistically robust methods for segmentation and shape estimation with
applications ranging from wide-area mapping to object recognition, and the results of our
efforts in this area are developed in detail in publications [1 1,12,18,25,30-32,39,46,50,55-
57].

j) Inrecent years a theory has developed for so-called curve evolution equations in
which the objective is to smooth or evolve curves in images in order to find object
boundaries or segment images. One rich framework for doing this involves the
minimization of functionals related to the geometry of the curves. For example, minimizing
curve length leads to a curve evolution in which the local speed of " shrinking" of a curve is
determined by the curvature at each point. It had been known for some time that one way in
which to apply this algorithm to segmentation involved the use of some image-guided
metric for measuring the local length (and hence the curvature) of a curve. In particular, if
one defines a local measure of curve length in terms of the local image gradient so that
curves have much smaller length in regions of high image gradient, one can, in principle,
design curve evolutions that will evolve to shortest length curves (in this adapted metric)
that correspond to edges of regions or objects. Computing image gradients, of course, is a
notoriously noisy process, so that ad hoc methods for obtaining smoothed image gradients
were used. As a result, these algorithms had limited robustness and tended either to fail for
very noisy images or to require excessive or ad hoc smoothing that limited the sharpness of
the resulting segmentations. Moreover, the lack of a statistical formulation made it difficult
to understand how these algorithms might be modified in order to enhance robustness.
Furthermore, the evolutions had no natural way in which to grow rather than shrink, which
required either a very carefully chosen initial condition for the curve or an ad hoc initial
period of curve dilation before initiating curve shrinkage.

This state of affairs, as well as the intellectual objective of constructing a statistical
framework for curve evolution, provided the motivation for our recent research. The
simplest setting in which to understand the ideas behind our first work in this area is the
binary segmentation problem in which we wish to partition an image into two subsets
(neither of which needs to be connected--i.e., each can consist of an unknown number of
connected components) so that the image pixel values have distinctly different mean values
in each region. Equivalently, we need to find the curve C defining the boundary between
these two subsets (so that this curve itself may consist of an unknown number of
disconnected subcurves). The statistical optimality criterion we use to estimate C is simply




the negative of the square of the difference of the sample means computed in two regions
separated by C (i.e., nside and outside). Gradient descent for the minimization of this
functional then leads to a remarkably simple and robust curve evolution equation. In
particular, rather than using local gradients to evolve the curves, this new evolution uses
nonlocal and thus statistically more stable statistics, namely the sample means inside and
outside, as drivers. The resulting evolution is quite robust to noise and in particular
produces remarkably accurate segmentations of images even when starting from what are
essentially arbitrary initial curves consisting of small subcurves distributed over the entire
image domain. We have also shown how this method extends to the segmentation of an
image into more than two statistically distinct regions which are not necessarily required to
be disjoint (a potentially useful capability if occlusion is a significant issue).

k) In the second component of our work in this area we have adapted the flow
described in (j) by including a global constraint that significantly aids performance for
low-contrast images with complex region shapes. In particular, the evolutions defined by
our work in (j) move a curve dynamically in order to increase the squared-difference
between the sample means inside and outside of the curve. Since the objective is simply to
increase the squared-difference, it is perfectly possible for the curve to evolve so that the
means move in the same direction (e.g., both increase) but in a manner such that their
difference also increases in magnitude. By modifying the evolution it is possible to ensure
that the curve evolution always moves not only to increase the difference in means but also
to drive each of the means in opposite directions. This modification does not affect
computational complexity of the algorithm at all but produces rather remarkable
segmentation for very complex images (e.g., for biomedical images of various types).

1) In [46] we describe research stemming from a curve-evolution interpretation and
solution of a widely known combined image denoising and segmentation problem
introduced by Mumford and Shah. This extension not only is of great intellectual
significance in showing an explicit tie between curve evolution and statistical image
analysis but also leads to some very interesting and important new image processing
algorithms. In particular, our analysis has established that the solution to this problem
involves a curve evolution coupled with the solution of elliptic PDE’s inside and outside the
curve. These PDE’s characterize the optimal image estimate in each region based on the
current estimated location of the curve. The behavior of these estimates near the current
curve location then provide the driving term for the curve evolution, generalizing in a very
elegant manner the work described in (§) in which the sample means inside and outside are
used, together with image values on either side of the current curve location to drive the
curve evolution. As can be seen in [46), the resulting algorithm has remarkable capabilities
for segmenting images into multiple regions automatically without prior knowledge that
there are multiple regions (or how many regions might be present). Moreover, because of
its estimation-theoretic basis, the algorithm works equally well if there are missing data or
data gaps as can occur for surveillance imagery (e.g., due to speckle, shadowing, or
blockage due to cloud cover). In fact, using this same idea, we can extend this method to
perform image magnification: we view our observed image as a subsampled version of a
finer-scale image and then use our algorithm to smoothly interpolate to the higher resolution
both inside and outside the curve without any blurring across the curve boundary. Our
results demonstrate that this approach is far superior to any previously known method for
image magnification.

2.4 Blending Physics and Statistical Learning for Image Reconstruction,
Feature Extraction, and Fusion




In this section we describe our research on marrying sensor physics with statistics
in order to develop robust methods for exploiting the information present in sensor data.
The fundamental idea here is that a full, heavy use of fundamental physics (e.g., solving
Maxwell’s equations) is clearly inappropriate for sensor fusion since there are limitations in
the “apertures” through which we view the phenomenon both from the input and output
sides. In particular, the data that are typically available (e.g., to form a SAR image) are far
too limited in extent and subject to too many sources of uncertainty and variability to
warrant full solution of the inverse scattering problem in order to form an image.
Fortunately, and complementary to the limitations in the observed data is the fact that the
desired information we wish to extract from such sensor data--e.g., detections and
classifications of objects--are far more limited than a complete inverse scattering solution.
On the other hand, discarding all physics also is unwise, as the constraints implied by
sensor physics can be used to reduce the apparent number of degrees of freedom in the
data, thus enhancing the quality of any statistical analysis. The challenge is to determine
the proper balance between physics/model-based methods and statistical/learning methods.
This is a deep and enduring theme to which we believe we have made some contributions.
Our work to date in this broad area is described in [4,8,10-11,23-24,37-38,40-41,48-
49,51,53-54,58,65-66,69].

m) We have investigated a first principles estimation-theoretic approach to
Synthetic Aperture Radar (SAR) imaging of moving scenes. In particular, we have
extended the general SAR image formation problem, which aims to estimate radar cross
section (RCS) in each pixel, to allow for the joint estimation of both RCS and a scene
velocity vector in each pixel. However, the maximum likelihood estimation problem for
the reconstruction of both of these quantities is a highly ill-posed variational problem unless
we incorporate a regularizing prior model either on RCS variations or scene velocity (or
both) across the image domain. The approach we have taken to addressing this problem is
that of formulating variational problems corresponding to the joint MAP estimation of RCS
and velocity fields over the scene domain. In particular, to capture the fact that we want to
final image to be sharply focused, we have investigated the use of an L, penalty on the
reconstructed RCS field. As Donoho has thoroughly discussed, the inclusion of such a
penalty tends to favor sparse representations which in this case corresponds to the
reconstruction of sharp images of bright scatterers. Interestingly, this term by itself leads
to remarkably enhanced SAR reconstructions even when we know that there is no motion
in the scene being imaged. In particular the presence of this sharpening term suppresses
standard SAR sidelobes dramatically. Moreover, this regularizing term by itself allows us
to estimate coarse scene motion--€.g., the mean velocity over a target region is accurately
estimated simply with the inclusion of this L, penalty on the reconstructed RCS field and
without any regularization of the velocity. However, as we begin to allow for varying
velocities across the image scene (as is the case in typical SAR and ISAR imaging scenarios
due to non-translational and nonrigid target motion), our preliminary results make it clear
that we will need to introduce a regularizing prior for the velocity field as well.

n) A second component of our research in this area involves the development of a
methodology that combines SAR scattering physics with observed SAR imagery taken at a
number of different aspects to construct a SAR target model that captures the salient
features that are robustly extractable from SAR data. Rather than taking the mathematical
physics perspective of viewing this as a very ill-posed inverse scattering problem, we take
advantage of the fact that salient features for SAR-based target discrimination are generally
confined to a much lower-dimensioned set, corresponding to significant scatterers of
different types. In our initial work in this area we have begun by limiting our attention to a
small number of discrete scattering mechanisms, each of which has a well-defined,
deterministic scattering response. The idea then is that individual SAR images are
processed in order to extract estimated locations and types of features. Processing of these




individual images, however, results in the extraction of false features, missed detections of
some actual features, and the misclassification of others due to noise, clutter, and to the
limited aperture used in each individual SAR image. However, by associating features
from multiple images using statistically optimal methods, we can obtain a consistent image
that rejects spurious detections in individual SAR images and corrects for misses and
misclassifications. Our results demonstrate the potential of this approach and also suggest
ways in which to enhance it significantly and, more fundamentally, to understand more
deeply how to exploit sensor physics in a statistically significant manner.

In particular, we have also taken a first set of steps aimed at relaxing the restriction
on scattering types in order to capture some of the variability of scattering. Specifically, one
of the important characteristics that is certainly captured in the full inverse scattering
formulation but is lost if we insist on compressing each individual SAR view to a small,
discrete set of types is the characteristic variability of the scattering response from a
distinctive scatterer when we look at it from multiple viewing angles. If we could exploit
that characteristic signature across views we would undoubtedly obtain better
reconstructions of SAR scattering features and, in particular, a better indication of the
robust and salient information that can be extracted from SAR images. In our initial work
we have taken an initial and very limited look at how we might extend our framework to
capture some of this variability for a specific scattering mechanism. In particular, some
scatterer types (cylinders and so-called “top hats”) appears as bright spots at different
positions in images taken at different views due to the nonzero radius of the scatterer. This
can lead to biases in the estimates of the location of the scatterer and to incorrect rejection of
the feature if this characteristic is not recognized. However, if we include scatterer radius
as another parameter to be estimated as part of the process of fusing information from
multiple views, we can correct for this bias and correctly associate features extracted from
different views that otherwise would appear to be originating from different locations.

0) Building on earlier work on multiresolution analysis of SAR imagery, we have
taken a deeper look marrying SAR physics with nonparametric statistical learning methods
for constructing probabilistic models for multiresolution imagery. In particular consider
the formation of SAR imagery based on a given full aperture of data. If we use the entire
aperture, we obtain imagery at the finest resolution resolvable using that data. However, to
do this we in essence must assume that all scattering is isotropic, i.e., that the response
from significant scatterers is constant across the entire aperture. For many important
scattering mechanisms this is not the case at all, and this anisotropy is critical to
distinguishing one scatterer type from another. Suppose then, that in addition to forming
an image using the entire aperture, we also form three images each using half of the
aperture: one image using the right half, one the left, and one using a centered half-
aperture. If indeed there are anisotropic scatterers, we might expect that there would be
differences in the responses in each of these half-apertures and hence in the images formed
using them (note that these images would have pixel sizes twice as large as the ones in the
finest scale imagery). Iterating this process, we can imagine forming a vector of images at
each of a sequence of scales corresponding to progressively smaller subapertures. By
looking across scale, then, we would expect not only to find statistical variability due to
speckle but also any evidence of anisotropic scattering manifesting itself in statistically
significant differences in pixel intensities in images formed using different subapertures.

Characterizing these differences in a statistically sound manner so that they can be
exploited either for the extraction of features or for the recognition of objects, however,
requires a significant departure from the linear-Gaussian modeling framework for
multiresolution modeling on which we have focused most of our effort in the past. In
particular, we now are faced with a multiresolution vector pyramid of images where the
dimensionality of the vector is larger at coarser resolution (since forming a coarser
resolution image requires a commensurably smaller subaperture of the SAR data, allowing
more images to be formed). Furthermore and most importantly, much as in (d), the




behavior across scale in this multiresolution pyramid is decidedly non-Gaussian (as, in
particular, we are especially interested in significant outliers corresponding to characteristic
behavior of particular anisotropic scatterers). In our work along these lines we have
investigated the use of nonparametric density estimation techniques to build models
capturing statistical variability from scale to scale.

p) Finally, in some very recent research we have explored the use of nonparametric
statistics and statistical learning methods for problems of fusing information from
completely different sensing phenomenologies. In doing this we have used several very
different applications as vehicles. The first of these involves so-called functional MR
imaging (fMRI). In this application, a patient performs a specific protocol, such as
squeezing a ball, waving an arm, listening to words, speaking words, etc., while at the
same time a sequence of MR images is taken of his or her brain. The challenge of fMRI,
then, is to determine which voxels in a 3-D MR image volume involve activity in response
to the protocol. Looking at a single candidate voxel, we have the problem of determining if
there is any relationship between two time signals, one being the protocol (typically an on-
off square wave signal, e.g., corresponding to squeezing a ball and then relaxing in a
periodic manner) and the other being the time history of the MR image in the candidate
voxel. While standard correlation methods (corresponding to assuming a linear
relationship between these signals) are sometimes used, it is clear on looking at the signals
that the relationship is highly nonlinear. As a result, we have the question of determining
if, in some precisely measurable way, the information in these two signals is related. The
approach we have taken is to use mutual information as a metric to quantify this
relationship and have adopted the use of nonparametric statistical methods in order to
estimate this quantity. At this point we have preliminary and very promising results on this
application.

The second application involves the fusion of video imagery with acoustic signals
sensed by microphones. In this case, the objective is to determine what action in the
viewed scene is the source of the sensed acoustic signal (or what actions are responsible for
the acoustic signal if there are several acoustic sources to be separated). We have
developed a nonparametric statistics approach to finding the linear projection of the image
scene that has maximal mutual information with the sensed acoustic signal. The results on
preliminary imagery are striking in their ability to localize sources of sound.
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V. INTERACTIONS/TRANSITIONS

In this section we summarize the various interactions and transitions associated with
research supported by AFOSR Grant F49620-98-1-0349, focusing on the last year of this
grant (we refer the reader to previous progress reports for information on previous
activities in these areas).

Participation/Presentation at Meetings

In addition to presentations at professional conferences, we have been involved in
the following other meetings during the past year:

(1) Prof. Willsky has continued to have regular meetings with engineers and
researchers at Alphatech to discuss collaborative research in the area of SAR-based ATR
and, more recently, in multiresolution modeling and fusion for global awareness in
connection with an Alphatech project under AFOSR's New World Vistas initiative. In
addition, our work on graphical models has direct relevance to DARPA’s Dynamic
Database Program, and we have initiated discussions with Alphatech on topics of mutual
interest.

(2) In January 2000 Prof. Willsky delivered the keynote address at the AFRL-
AFOSR Workshop on Future Directions in Sensor Fusion and Automatic Target
Recognition, held at Eglin AFB.

(3) At the request of AF LGen (Ret.) Lincoln Faurer, President of the National
Correlation Working Group (and former Director of the National Security Agency), Prof.
Willsky participated as one of the lead panelists on data and sensor fusion at the May 2000
NCWG Workshop on Information for the Warfighter, held at Fort Monroe, Virginia, in
collaboration with the Aerospace C2ISR Center in Langley.

Consultative and Advisory Functions

During the year, Prof. Willsky has been engaged in the following activities relevant
to the research being performed under our AFOSR grant:

(1) Prof. Willsky has regularly acted as a consultant to Alphatech, Inc. in a number
of research projects including ones that represent direct transitions of the technology being
developed under our AFOSR Grant.

(2) Over the past 2.5 years Prof. Willsky has acted as co-chair (with Dr. Wendy
Martinez of ONR) of a tri-service working group on the role of probability and statistics in
command and control. Prof. Willsky was the principal author of the report produced by
this panel. ,

(3) In October 1998, Prof. Willsky was appointed to the Air Force Scientific
Advisory Board. During his first year in this position, Prof. Willsky participated in the
S&T Review of AFRL/SN and the relevant parts of AFOSR supporting SN, and he also
was an active participant on the Intelligence and Vigilance Panel for the 1999 AF/SAB
Summer Study on Technology Options to Leverage Aerospace Power for Operations Other
than Conventional War. During the Fall of 200, Prof. Willsky served on the S&T Review
Panel for AFRL/IF and the associated AFOSR programs, and he has recently completed his
effort as a member of the Technology Panel in this year’s AF/SAB Summer Study on




AFC?2: The Way Ahead (a topic specifically requested by the Air Force Chief of Staff),
including being the principal author of recommendations on sensor and data fusion.

(4) At the request of Mr. E. Zelnio of AFRL/SN, Prof. Willsky participated as a
member of an ad-hoc panel helping Mr. Zelnio and AFRL with its plan for technology
insertion to meet both short- and intermediate-term objectives related to the “Tanks under
Trees” initiative requested by the Air Force Chief of Staff in response to needs identified in
Kosovo operations.

Transitions
The following are the transitions of our research that are taking place:

(1) Our multiresolution SAR discrimination algorithms, most recently for the

~ classification of nonisotropic scattering behavior, are being transitioned to Alphatech for
inclusion in advanced model-based ATR algorithms. The points of contact on this are Dr.
Robert Washburn, Dr. John Wissinger, and Dr. Gil Ettinger.

(2) Our work on multiresolution SAR analysis and high-resolution pursuit have
been transitioned to Alphatech under a Small Business Technology Transfer contract from
the Army Research Office to transition our multiresolution mapping and estimation methods
to military applications. The points of contact at Alphatech for this are Dr. Robert

Washburn and Mr. Thomas Allen.

(3) Our efficient methodology for multiresolution mapping and data fusion are
being transitioned to Alphatech as part of an SBIR program, through NIMA, on fusion of
multiresolution and multipass data to produce high-fidelity terrain maps. The point of
contact is Mr. Thomas Allen.

(4) Our current work on building SAR scattering models from multiple-view SAR
imagery is being carried out in close contact with Alphatech engineers to ensure rapid '
transition. The points of contact are Dr. John Wissinger and Dr. Gil Ettinger.

(5) Our work on stabilized inverse diffusion equations for nonlinear image
segmentation has been transitioned to Alphatech for the segmentation of IR imagery as part
of an AFRL Sensors Directorate program on SAR-FLIR fusion. The point of contact on

this is Mr. Thomas Allen.

(6) We have recently initiated discussions with Alphatech on the transition of our
work on statistical image segmentation and region estimation using curve evolutions, both
to DARPA’s Dynamic Database (DDB) Program and to imaging projects in medical
imaging and video surveillance. The points of contact on this are Dr. Joel Douglas, Dr.
John Wissinger, and Dr. Gil Ettinger.

(7) We have also begun transitioning our most recent work on covariance extension
and graphical models to an Alphatech SBIR on road network estimation, an adjunct to
DARPA’s DDB Program. The point of contact is Dr. Joel Douglas.




